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1. 

There are two generally accepted computational techniques which frequently meet
on the pages of the Journal of Sound and Vibration in vibration analysis of
rectangular and skew plates. Through the last three decades many authors [1–3]
have utilized the Rayleigh–Ritz method and spline approximation in computing
transverse vibrations of plates because of their extensive need in a variety of
applications in engineering design. In contrast to this practical importance of
vibration analysis of plates in many areas of mechanical, aerospace, ocean,
electronic and optical engineering, the methods used for solving the corresponding
eigenvalue problems still do not take advantage of all possibilities offered by these
popular techniques.

The aim of this study is to present an effective easy to build and easy to use
technique for the computation of transverse vibrations of rectangular and skew
plates by the Rayleigh–Ritz method using B-spline trial functions.

2. –   -

The Rayleigh–Ritz method applied to the equation

D2F= lF in V, (1)

describing the free transverse vibrations of an isotropic uniform plate, results in
the minimization of the following Rayleigh quotient

D
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over the set of functions from the Sobolev space W2
2 (V) satisfying the

corresponding boundary conditions [4]. Here l= rv2/D, where r is the mass
density per unit area of the plate, v is the circular frequency, D is the flexular
rigidity and n is Poisson’s ratio. For simplicity only the boundary conditions most
frequently used in practice for an edge parallel to the y-axis will be mentioned.
Thus,

F=
1F

1x
=0, F=

12F

1x2 + n
12F

1y2 =0, (3, 4)
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and

12F

1x2 + n
12F

1y2 =
13F

1x3 + (2− n)
13F

1x 1y2 =0 (5)

represent the boundary conditions for a clamped, simply supported, and free edge,
respectively. The corresponding boundary conditions for an edge parallel to the
x-axis are obtained by interchanging x and y in equations (3), (4), and (5).

The success in the minimization of Rayleigh’s quotient depends on a suitable
choice of n trial functions fi satisfying the corresponding boundary conditions and
effective solution of the generalized matrix eigenvalue problem

Ru= lSu (6)

resulting from the Ritz method applied to expression (2).
The suitable choice of trial functions must reflect the quantitative and

qualitative properties of the exact eigenfunctions which exhibit singular behaviour
at corner points of the boundary [5–8] and the higher eigenfunctions oscillations.
To achieve good approximations of eigenfunctions with corner singularities, i.e.,
exhibiting non-polynomial behaviour in the neighbourhood of the corner points,
it is necessary to use a local approximation scheme (finite elements, spline
functions, multidomain approach) instead of the classical algebraic and
goniometric polynomials. Moreover, in the case of the local trial functions the
resulting matrices are sparse and well conditioned which results in more
straightforward and reliable solution of equation (6). For these reasons the local
approach represented by B-spline trial functions has been use in this study.

Denote by Bl
i (x) the ith algebraic B-spline of order l created over l subintervals

�xi , xi+1�, �xi+1, xi+2�, . . �xi+ l−1, xi+ l�, where {xi} is a finite increasing
sequence of mesh points. On each of these l subintervals Bl

i (x) is an algebraic
polynomial of order (l−1) and outside of these subintervals Bl

i (x)0 0. Such a
piecewise polynomial function Bl

i (x) is continuous on the whole real line together
with all derivatives up to order (l−2) [9].

3.   

The subspace iteration method (SIM) is probably the most popular method in
solving large and sparse eigenproblems in structural mechanics. If the n× q matrix
X1 contains initial approximations of the first q eigenvectors of (6), then the basic
version of SIM for computing the p lowest eigenvalues pQ q and associated
eigenvectors consists of the following four steps:
(1) Solve q systems of linear equations

RX*k+1 =SXk .

(2) Compute the q-dimensional projections of the matrices R and S

Rq
k+1 = (X*k+1)TRX*k+1 Sq

k+1 = (X*k+1)TSX*k+1.

(3) Solve the projected q× q eigensystem

Rq
k+1Qk+1 =Lk+1Sq

k+1Qk+1.
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(4) Compute improved approximations of q eigenvectors

Xk+1 =X*k+1Qk+1,

and repeat the steps (1)–(4) until convergence of the first p eigenvalues. Many
theoretical and practical details concerning SIM can be found in references
[10–12].

Clearly, the bottleneck of this simple method is its first step—repeated solution
of systems of linear equations. The most effective way of how to solve repeatedly
the linear system of equations Ru= bi with different right-hand sides bi is to
compute the Cholesky factorization R=LLT, where the Cholesky factor L is a
lower triangular matrix and, consequently, one can obtain the desired ui by solving
the triangular systems Lwi = bi and LTui =wi with the same L for all i [13].

4.  

The intention in this secton is to illustrate the convergence of the computed
eigenvalues of some model problems with respect to the continuity (l=4, 6, 8)
and dimension (n=576, 1296, 2304) of the used B-spline approximation. The
matrices R and S of the generalized eigenvalue problem (6) are created by
numerical integration using 20-point Gaussian quadrature on each subinterval
�xi , xi+1� of the corresponding one-dimensional mesh. Because these matrices are
of band structure, the Cholesky factor L of the matrix R can be computed by the
LINPACK [14] subroutine DPBCO and, consequently, the LINPACK subroutine
DPBSL solves the systems of linear equations needed in the first step of SIM.

4.1. Clamped square plate

The clamped square plate is one of the standard eigenvalue problems of interest
for mathematicians and mechanical engineers and it deserves some remarks. The
interest stems mainly from two phenomena—the stress singularities in angular
points [6, 7, 15, 16] and the existence of nodal lines for the first eigenfunction
[17–19].

As is known, the singular part sing (r, u) (in the polar co-ordinates r, u) of the
asymptotic expansion of the clamped square plate eigenfunctions near the corner
points has the form

sing (r, u)= s
a

i=1

ai Re {rzifi (u)}, u$�0, p/2�, r$�0, o�,

where fi (u) are symmetric functions with respect to the axis of the corner angles
for i odd and antisymmetric functions for i even. By virtue of the shapes of
eigenfunctions (the graphical results of reference [18]) and the values of
zi (z1 1 3·74+ i1·12 and z2 1 5·81+ i1·47) some eigenfunctions are smoother than
others. For example, among the first 46 eigenfunctions plotted in reference [18]
the eigenfunctions F5, F12, F16, F21, F27, F32, F34, F38 and F45 are antisymmetric
functions with respect to the axes of the corner angles and, consequently, because
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T 1

Values of the Rayleigh–Ritz approximations vn
i for the first five frequencies vi of

the clamped square plate of the length a using the B-spline trial functions (7) of order
l=4, 6, 8 and dimension n=576, 1296, 2304 (n1 =24, 36, 48); note that

li =v2
i a4r/D and a= r=D=1

l n1 vn
1 vn

2,3 vn
4 vn

5

4 24 35·98519140 73·3938486 108·2165096 131·58094
4 36 35·985191162 73·3938460 108·21650298 131·580799
4 48 35·985191129 73·39384567 108·21650206 131·580781
6 24 35·9851911162 73·3938455291 108·216501796 131·58077261762
6 36 35·98519111523 73·3938455242 108·2165016923 131·580772614364
6 48 35·98519111515 73·39384552392 108·2165016911 131·580772614307
8 24 35·98519111547 73·39384552496 108·2165016955 131·5807726143028
8 36 35·985191115149 73·39384552394 108·2165016912 131·5807726143026
8 48 35·985191115125 73·393845523863 108·21650169092 131·5807726143022

these functions do not contain the most singular term rz1f1(u), which is a symmetric
function with respect to the axis of the corner angle, they are smoother than others.

The approximations of the first five circular frequencies of clamped square plate
of the length a using the trial functions

fi,j (x, y)= x2(a− x)2y2(a− y)2Bl
i (x)Bl

j (y), i, j=1, 2, . . . , n1 (7)

are given in Table 1.

4.2. Clamped skew plate

The next examples to be solved are clamped skew plates with sharp boundary
corners of magnitude p/4 (i.e., reentrant corners 3p/4) and p/12 (i.e., reentrant
corners 11p/12). As is known [7, 8], the greater reentrant corners cause more
singular behaviour of the corresponding eigenfunctions.

The usual approach in the solution of problems defined on a rhombus uses the
following transformation

x= r− s cos k/sin k y= s/sin k,

which maps the rhombus (in the r, s plane) of side length a and sharp interior angle
k onto the square P=[0, a]× [0, a]. Consequently, instead of the Laplace
operator D in equation (2) defined on a complicated skew shape one has to work
with the slightly more complicated operator

1
sin2 k $12F

1x2 −2 cos k
12F

1x 1y
+

12F

1y2%
defined on the square P. If either U=0 or 1U/1n=0 on the boundary of the
rhombus, then F=0 or 1F/1n=0 on the boundary of P. The computations using
the trial functions (7) presented in Table 2 (k= p/4) and Table 3 (k= p/12) very
clearly demonstrate essentially slower convergence of the skew plate approximate
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T 2

Values of the Rayleigh–Ritz approximations vn
i for the first four frequencies vi of

the clamped skew plate (k= p/4) of the length a using the B-spline trial functions
(7) of order l=4, 6, 8 and dimension n=576, 1296, 2304 (n1 =24, 36, 48); note

that li =v2
i a4r/D and a= r=D=1

l n1 vn
1 vn

2 vn
3 vn

4

4 24 65·6432 106·494975 148·3131 157·2371
4 36 65·642874 106·4949166 148·3121 157·23467
4 48 65·642817 106·4949087 148·31192 157·23423
6 24 65·64284 106·494905563 148·31191 157·23435
6 36 65·6427966 106·49490555747 148·311865 157·234074
6 48 65·6427916 106·49490555717 148·311859 157·234036
8 24 65·64281 106·4949055580 148·311876 157·23414
8 36 65·6427917 106·49490555720 148·3118596 157·234037
8 48 65·642790233 106·494905557077 148·311857844 157·23402535

frequencies in comparison with the square plate case, although the skew problems
have been solved as the corresponding transformed square problems.

5.  

The computer program producing the presented results uses the simplest basic
version of SIM without any improvements considered in references [10, 20–22]. In
spite of this simplicity the number of SIM iterations was always less than 15 using
the initial eigenvectors created as the Cartesian product of the eigenvector
approximations of the beam equations with the end conditions corresponding to
the boundary conditions of the solved plate problem. The matrices R and S are
stored in CSR (Compressed Sparse Row) format [23] in which only the non-zero

T 3

Values of the Rayleigh–Ritz approximations vn
i for the first four frequencies vi of

the clamped skew plate (k= p/12) of the length a using the B-spline trial functions
(7) of order l=4, 6, 8 and dimension n=576, 1296, 2304 (n1 =24, 36, 48); note

that li =v2
i a4r/D and a= r=D=1

l n1 vn
1 vn

2 vn
3 vn

4

4 24 408·48 522·86 627·59 742·72
4 36 407·71 520·98 621·18 726·73
4 48 407·53 520·72 620·20 724·23
6 24 407·56 520·63 619·92 723·41
6 36 407·445 520·6156 619·827 723·2846
6 48 407·417 520·6143 619·815 723·2820
8 24 407·488 520·6197 619·848 723·293
8 36 407·420 520·61447 619·8162 723·2821
8 48 407·4046 520·614112 619·810104 723·28163
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elements are considered, while the Cholesky factor of R uses band storage format
[14]. In practice one needs 1·6, 4·6, and 9·9 MB of the main memory to keep the
corresponding three matrices for n=576, 1296, and 2304 (l=8 for each of n),
respectively. This amount of main memory is certainly no problem for the majority
of computer environments used in engineering design and analysis.

Comparisons between the results for square shape and skew shape indicate that
owing to small regularity of the approximated eigenfunctions, accuracy of the
eigenvalue approximations is essentially smaller for the skew shape. This may
cause some misleading conclusions in solving such problems using global trial
functions as algebraic and goniometric polynomials which are more sensitive to
the regularity of approximated functions than locally supported trial functions.
Therefore, the stagnation of convergence in solving some problems defined on
sharp skew shapes (having big reentrant corners) need not signify that the results
are of the desired accuracy. In such cases a posteriori error estimations [24] of the
eigenvalue approximations may be helpful.

While the trial functions for solving the clamped plate problem can be built very
simply, in the remaining cases it is necessary to build them as a linear combination
of the neighbouring B-splines. For example, let us have to build trial functions for
a plate free at the edge x=0 and clamped at the edge x= a. The simple functions
cl

i (x)=Bl
i (x)(a− x)2 satisfy clamped edge condition at x= a, while free edge

conditions at x=0 can be constructed as the free end conditions of a beam by
linear combination of the neighbouring cl

i (x). If one selects quartic B-splines
(l=5), the corresponding mesh points {xi} in the surrounding of x=0 are
distributed as

x1 Q x2 Q x3 Q x4 Q x5 0 0Q x6 Q x7 Q . . . . ,

and cl
i (x) which have non-zero values at x=0, are the ones for i=1, 2, 3, 4. In

this case, we can take

f1(x)=c5
1 (x)+ a1c

5
2 (x)+ b1c

5
3 (x), f2(x)=c5

2 (x)+ a2c
5
3 (x)+ b2c

5
4 (x),

f3(x)=c5
5 (x), f4(x)=c5

6 (x), . . . ,

where the coefficients ai and bi are determined from the system of two linear
equations f0i (0)=f1i (0)=0. This approach produces (l−3) end trial functions
for every l. Moreover, the trial functions for the Rayleigh–Ritz method must
satisfy exactly only the geometric boundary conditions and the remaining ones
may be ignored. This means that trial functions for a simply supported plate must
satisfy only the condition u=0 on 1V. The error estimations of the first six
frequencies of a simply supported plate using the trial functions

fi,j (x, y)= x(a− x)y(a− y)Bl
i (x)Bl

j (y), i, j=1, 2, . . . , n1 (8)

satisfying only u=0 on 1V are reported in Table 4. These results indicate that
no more than the last three figures are destroyed by round-off error.

Although the simplest variant of the subspace iteration method has performed
very well in all the presented computations, one can meet with requirements to
use a more efficient and robust method for solving generalized large sparse matrix
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T 4

Error estimations for the Rayleigh–Ritz approximations vn
i of the first five

frequencies vi of the simply supported square plate using the B-spline trial functions
(8) of order l=4, 6, 8 and dimension n=576, 1296, 2304 (n1 =24, 36, 48)

l n1 =vn
1 −v1= =vn

2,3 −v2,3= =vn
4 −v4= =vn

5 −v5=

4 24 0·77D-8 0·61D-5 0·12D-4 0·60D-3
4 36 0·13D-8 0·99D-6 0·20D-5 0·97D-4
4 48 0·37D-9 0·29D-6 0·57D-6 0·28D-4
6 24 0·57D-13 0·24D-10 0·49D-10 0·14D-7
6 36 0·68D-12 0·11D-11 0·17D-11 0·26D-9
6 48 0·34D-12 0·17D-12 0·40D-12 0·19D-10
8 24 0·23D-12 0·14D-12 0·17D-12 0·15D-11
8 36 0·17D-12 0·16D-12 0·18D-12 0·14D-13
8 48 0·80D-12 0·21D-12 0·11D-12 0·14D-13

eigenproblems. In this case the Lanczos method [25, 26], the Rayleigh quotient
iteration method [27], and the implicitly restarted Arnoldi method [28] are very
promising alternatives. There are three reliable FORTRAN packages freely
available on the INTERNET

LANZ at http://www.netlib.org/lanz/
BLZPACK at http://www.nersc.gov/ ˜ osni/
ARPACK at http://www.caam.rice.edu/software/ARPACK/.
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of Köln. Results of the eigenvalue problem for the plate equation.

19. C. W 1996 Archiv der Mathematik 66, 420–427. A numerical existence proof of
nodal lines for the first eigenfunction of the plate equation.

20. F. A. A, W. H. D and B. M. I 1982 International Journal for Numerical
Methods in Engineering 18, 583–589. Acceleration of subspace iteration.

21. S. R and M. V. N 1994 International Journal for Numerical
methods in Engineering 37, 141–153. An accelerated subspace iteration method.

22. V. V, G. V́, D. G and J. L. M̃-C 1998 International Journal
for Numerical Methods in Engineering 41, 391–407. Variational accelaration for
subspace iteration method. Application to nuclear power reactors.

23. Y. S 1996 Iterative Methods for Sparse Linear Systems. Boston, MA: PWS.
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